
10/22/2008

1

Arrays and ArrayList

Lecture 8 - B

Object-Oriented Programming

Array Basics

• An array is a collection of data values.

• If your program needs to deal with 100

integers, 500 Account objects, 365 real

numbers, etc., you will use an array.

• In Java, an array is an indexed collection of

data values of the same type.

Lecture 8 - B 2Object-Oriented Programming

10/22/2008

2

Arrays of Primitive Data Types

• Array Declaration

<data type> [] <variable> //variation 1

<data type> <variable>[] //variation 2

• Array Creation

<variable> = new <data type> [<size>]

• Example

double[] rainfall;

rainfall

= new double[12];

Variation 1

double rainfall [];

rainfall

= new double[12];

Variation 2

An array is like an object!
Lecture 8 - B 3Object-Oriented Programming

Accessing Individual Elements
• Individual elements in an array accessed with the indexed expression.

double[] rainfall = new double[12];

The index of the first
position in an array is 0.

rainfall
0 1 2 3 4 5 6 7 8 9 10 11

rainfall[2]
This indexed expression

refers to the element at

position #2

Lecture 8 - B 4Object-Oriented Programming

10/22/2008

3

Array Processing – Sample1
double[] rainfall = new double[12];

double annualAverage,

sum = 0.0;

for (int i = 0; i < rainfall.length; i++) {

rainfall[i] = Double.parseDouble(

JOptionPane.showinputDialog(null,

"Rainfall for month " + (i+1)));

sum += rainfall[i];

}

annualAverage = sum / rainfall.length;

The public constant

length returns the

capacity of an array.

Lecture 8 - B 5Object-Oriented Programming

Array Processing – Sample 2
• Compute the average rainfall for each quarter.

//assume rainfall is declared and initialized properly

double[] quarterAverage = new double[4];

for (int i = 0; i < 4; i++) {

sum = 0;

for (int j = 0; j < 3; j++) {
//compute the sum of

sum += rainfall[3*i + j]; //one quarter

}

quarterAverage[i] = sum / 3.0; //Quarter (i+1) average

}

Lecture 8 - B 6Object-Oriented Programming

10/22/2008

4

Array Initialization
• Like other data types, it is possible to declare and

initialize an array at the same time.

int[] number = { 2, 4, 6, 8 };

double[] samplingData = { 2.443, 8.99, 12.3, 45.009, 18.2,

9.00, 3.123, 22.084, 18.08 };

String[] monthName = { "January", "February", "March",

"April", "May", "June", "July",

"August", "September", "October",

"November", "December" };

number.length

samplingData.length

monthName.length

4

9

12

Lecture 8 - B 7Object-Oriented Programming

Variable-size Declaration
• In Java, we are not limited to fixed-size array

declaration.

• The following code prompts the user for the size of an

array and declares an array of designated size:

int size;

int[] number;

size= Integer.parseInt(JOptionPane.showInputDialog(null,

"Size of an array:"));

number = new int[size];

Lecture 8 - B 8Object-Oriented Programming

10/22/2008

5

Arrays of Objects

• In Java, in addition to arrays of primitive data

types, we can declare arrays of objects

• An array of primitive data is a powerful tool, but

an array of objects is even more powerful.

• The use of an array of objects allows us to model

the application more cleanly and logically.

Lecture 8 - B 9Object-Oriented Programming

The Person Class

• We will use Person objects to illustrate the use of an array
of objects.

Person latte;

latte = new Person();

latte.setName("Mr. Latte");

latte.setAge(20);

latte.setGender('F');

System.out.println("Name: " + latte.getName());

System.out.println("Age : " + latte.getAge());

System.out.println("Sex : " + latte.getGender());

The Person class

supports the set methods

and get methods.

Lecture 8 - B 10Object-Oriented Programming

10/22/2008

6

Creating an Object Array - 1

Code

State
of
Memory

Person[] person;

person = new Person[20];

person[0] = new Person();

AA
Only the name person is

declared, no array is

allocated yet.

After is executedAA

person

Lecture 8 - B 11Object-Oriented Programming

person

Creating an Object Array - 2

Code

State
of
Memory

Person[] person;

person = new Person[20];

person[0] = new Person();

BB

Now the array for storing

20 Person objects is

created, but the Person

objects themselves are

not yet created.

After is executedBB

0 1 2 3 4 16 17 18 19

person

Lecture 8 - B 12Object-Oriented Programming

10/22/2008

7

Creating an Object Array - 3

Code

State
of
Memory

Person[] person;

person = new Person[20];

person[0] = new Person();CC

One Person object is

created and the reference

to this object is placed in

position 0.

0 1 2 3 4 16 17 18 19

person

0 1 2 3 4 16 17 18 19

person

After is executedCC

Person

Lecture 8 - B 13Object-Oriented Programming

Person Array Processing – Sample 1

• Create Person objects and set up the person array.

String name, inpStr;

int age;

char gender;

for (int i = 0; i < person.length; i++) {

name = inputBox.getString("Enter name:"); //read in data values

age = inputBox.getInteger("Enter age:");

inpStr = inputBox.getString("Enter gender:");

gender = inpStr.charAt(0);

person[i] = new Person(); //create a new Person and assign values

person[i].setName (name);

person[i].setAge (age);

person[i].setGender(gender);

}
Lecture 8 - B 14Object-Oriented Programming

10/22/2008

8

Person Array Processing – Sample 2

• Find the youngest and oldest persons.

int minIdx = 0; //index to the youngest person

int maxIdx = 0; //index to the oldest person

for (int i = 1; i < person.length; i++) {

if (person[i].getAge() < person[minIdx].getAge()) {

minIdx = i; //found a younger person

} else if (person[i].getAge() > person[maxIdx].getAge()) {

maxIdx = i; //found an older person

}

}

//person[minIdx] is the youngest and person[maxIdx] is the oldest
Lecture 8 - B 15Object-Oriented Programming

Object Deletion – Approach 1

int delIdx = 1;

person[delIdx] = null;
Delete Person B by

setting the reference in

position 1 to null.

0 1 2 3

person

A B C D

AA

0 1 2 3

person

A C D

Before is executedAA After is executedAA

Lecture 8 - B 16Object-Oriented Programming

10/22/2008

9

Object Deletion – Approach 2

int delIndex = 1, last = 3;

person[delIndex] = person[last];

person[last] = null;

Delete Person B by

setting the reference in

position 1 to the last

person.

0 1 2 3

person

A B C D

AA

0 1 2 3

person

A CD

Before is executedAA After is executedAA

Lecture 8 - B 17Object-Oriented Programming

Person Array Processing – Sample 3

• Searching for a particular person. Approach 2 Deletion is used.

int i = 0;

while (person[i] != null && !person[i].getName().equals("Latte")) {

i++;

}

if (person[i] == null) {

//not found - unsuccessful search

System.out.println("Ms. Latte was not in the array");

} else {

//found - successful search

System.out.println("Found Ms. Latte at position " + i);

}

Lecture 8 - B 18Object-Oriented Programming

10/22/2008

10

Passing Arrays to Methods - 1
Code

State of
Memory

minOne

= searchMinimum(arrayOne);

public int searchMinimum(float[]

number))

{

…

}

AA

At before searchMinimumAA

arrayOne
A. A. Local variable

number does not

exist before the

method execution

Lecture 8 - B 19Object-Oriented Programming

Passing Arrays to Methods - 2

Code

State of
Memory

minOne

= searchMinimum(arrayOne);

public int searchMinimum(float[]

number))

{

…

}

arrayOne

BB

arrayOne

The address is copied at BB

number
B. B. The value of the

argument, which is

an address, is copied

to the parameter.

Lecture 8 - B 20Object-Oriented Programming

10/22/2008

11

arrayOne number

While at inside the methodCC

Passing Arrays to Methods - 3
Code

State of
Memory

minOne

= searchMinimum(arrayOne);

public int searchMinimum(float[]

number))

{

…

}

CC

C. C. The array is

accessed via

number inside

the method.

Lecture 8 - B 21Object-Oriented Programming

arrayOne number

Passing Arrays to Methods - 4

Code

State of
Memory

minOne

= searchMinimum(arrayOne);

public int searchMinimum(float[]

number))

{

…

}

DD

arrayOne

At after searchMinimumDD

D. D. The parameter is

erased. The argument

still points to the same

object.

Lecture 8 - B 22Object-Oriented Programming

10/22/2008

12

Two-Dimensional Arrays

• Two-dimensional arrays are useful in representing tabular information.

Lecture 8 - B 23Object-Oriented Programming

Declaring and Creating a 2-D Array
Declaration

<data type> [][] <variable> //variation 1

<data type> <variable>[][] //variation 2

Creation

<variable> = new <data type> [<size1>][<size2>]

Example

double[][] payScaleTable;

payScaleTable

= new double[4][5];

3

2

1

0

43210
payScaleTable

Lecture 8 - B 24Object-Oriented Programming

10/22/2008

13

Accessing an Element

• An element in a two-dimensional array is accessed by its row and
column index.

Lecture 8 - B 25Object-Oriented Programming

Sample 2-D Array Processing
• Find the average of each row.

double[] average = { 0.0, 0.0, 0.0, 0.0 };

for (int i = 0; i < payScaleTable.length; i++) {

for (int j = 0; j < payScaleTable[i].length; j++) {

average[i] += payScaleTable[i][j];

}

average[i] = average[i] / payScaleTable[i].length;

}

Lecture 8 - B 26Object-Oriented Programming

10/22/2008

14

Java Implementation of 2-D Arrays

• The sample array creation

payScaleTable = new double[4][5];

is really a shorthand for

payScaleTable = new double [4][];

payScaleTable[0] = new double [5];

payScaleTable[1] = new double [5];

payScaleTable[2] = new double [5];

payScaleTable[3] = new double [5];
Lecture 8 - B 27Object-Oriented Programming

Two-Dimensional Arrays

• Subarrays may have different lengths.

• Executing
triangularArray = new double[4][];

for (int i = 0; i < 4; i++)

triangularArray[i] = new double [i + 1];

results in an array that looks like:

Lecture 8 - B 28Object-Oriented Programming

10/22/2008

15

Copying Arrays

int[] a, b; // Declare two arrays

a = new int[] { 10, 20 , 30 };

// Create one

b = a; // Make a copy of array a?

• Will this code create a copy of ‘a’ in ‘b’?

• It will only copy the reference of ‘a’ in ‘b’. a and b will

be pointing to the same array in the memory.

• This is known as shallow copy.

Lecture 8 - B 29Object-Oriented Programming

Copying Arrays (Deep Copy)

int[] a, b; // Declare two arrays

a = new int[] { 10, 20 , 30 };

// Create one

// Really make a copy of array ‘a’

b = new int[a.length]; // Allocate b

for (int i = 0; i < a.length; i++)

{

b[i] = a[i];

}

Lecture 8 - B 30Object-Oriented Programming

10/22/2008

16

Lecture 8 - B Object-Oriented Programming 31

Common Array Mistakes

• Assigning a scalar to an array

int[] myArray = 5;

– 5 is not an array, it is an element

• Assigning an array to a scalar

int[] myArray = new int[1000];

int myInt = myArray;

Lecture 8 - B Object-Oriented Programming 32

Common Array Mistake

• Never try to assign arrays of different

dimensions or you will become best friends

with something similar to:

“Incompatible type for =. Can’t

convert int[] to int[][]”

– similar message for assigning arrays of the

wrong type

10/22/2008

17

ArrayList

• ArrayList collections are similar to arrays,
except:

– They grow if you add items to them,
automatically

– They have methods for setting an element,
getting an element, and checking the size of the
list, rather than using operators or instance
variables

Lecture 8 - B 33Object-Oriented Programming

Advantages of ArrayList

• When you add an element to the array, it

will grow to fit

• When you remove an element from the

array, it shrinks to fit

• Adding or removing an element in the

middle doesn’t leave a “hole” -- elements

shift as needed

Lecture 8 - B 34Object-Oriented Programming

10/22/2008

18

Array vs. ArrayList

String[] cats = {“Fluffy”, “Boots”, “Puff”};

vs

ArrayList cats = new ArrayList();

cats.add(“Fluffy”);

cats.add(“Boots”);

cats.add(“Puff”);

Lecture 8 - B 35Object-Oriented Programming

Array vs. ArrayList

cats[0] = “Siamese”;

System.out.println(cats[0]+ “ cat”);

vs

cats.set(0, “Siamese”);

System.out.println(cats.get(0)+ “ cat”);

Lecture 8 - B 36Object-Oriented Programming

10/22/2008

19

Array vs. ArrayList

for(int ind=0;ind<cats.length;ind++){

System.out.println(cats[ind]);

}

vs.

for(int ind=0;ind<cats.size();ind++){

System.out.println(cats.get(ind));

}

Lecture 8 - B 37Object-Oriented Programming

Arrays and ArrayList

• Can one Array instance hold both primitive

types and object types?

Lecture 8 - B 38Object-Oriented Programming

10/22/2008

20

Wrapper Classes

• A collection can hold only objects

(instances of classes), not primitives

• For each primitive, there is a “wrapper

class”

– Integer for int

– Double for double

– Character for char

Lecture 8 - B 39Object-Oriented Programming

Using Wrapper Classes

• Each wrapper class contains one data member of an

appropriate value

• Constructor (one parameter)

– Integer myInt = new Integer(5);

– Character myChar = new Character(‘x’);

• Accessor

– int i = myInt.intValue();

– char c = myChar.charValue();

Lecture 8 - B 40Object-Oriented Programming

10/22/2008

21

Autoboxing

• Consider the following code:
ArrayList<Integer> numbers;

for(int i=0;i<5;i++){

numbers.add(i);

}

• Before Java 5.0, this code would cause an error
(adding a non-Integer to an array of Integers)

• With autoboxing, int is automatically upgraded to
Integer, char to Character, etc. when accessing a
collection of the same type.

Lecture 8 - B 41Object-Oriented Programming

Ensuring Type Safety

• ArrayList could hold many object types which cause

type safety issues.

• Starting Java 5.0 it allows generics for type safety.

ArrayList<String> s = new

ArrayList<String>();

ArrayList<String> t = s; //ok

ArrayList<Point> p = s; //compiler error

Lecture 8 - B 42Object-Oriented Programming

10/22/2008

22

Collection Types (Generics)

• You can only add an object of the proper type to

a collection

ArrayList<String> mylist = new

ArrayList<String>();

mylist.add(“hello”); //adds string to list

mylist.add(“12345”); //adds to list

mylist.add(12345); //compiler error

Lecture 8 - B 43Object-Oriented Programming

Another Example of Generics

List<BankAccount> accountList =

new ArrayList<BankAccount>();

accountList.add(new BankAccount("One", 111.11));

accountList.add(new BankAccount("Two", 222.22));

accountList.add(new BankAccount("Three", 333.33));

accountList.add(new BankAccount("Four", 444.44));

System.out.println(accountList.toString());

•Output

• [One $111.11, Two $222.22, Three $333.33, Four $444.44]

Lecture 8 - B 44Object-Oriented Programming

10/22/2008

23

Readings

Book Name: Object Oriented Programming in JavaTM

Author: Richard L.Halterman

Content: Chapter # 20 & 21

Book Name: Beginning Java Objects

Author: Jacquie Barker

Content: Chapter # 6

Lecture 8 - B Object-Oriented Programming 45

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by

the following people:

– Ellen Walker (Hiram College)

– Richard Halterman (Southern Adventist

University)

– C Thomas Wu (Naval Postgraduate School)

Lecture 8 - B 46Object-Oriented Programming

